
“Unobserved Corner” Prediction: Reducing Timing Analysis Effort for
Faster Design Convergence in Advanced-Node Design

Andrew B. Kahng†‡, Uday Mallappa‡, Lawrence Saul† and Shangyuan Tong†
†CSE and ‡ECE Departments, UC San Diego, La Jolla, CA, USA

{abk, umallapp, saul, s8tong}@ucsd.edu

Abstract—With diminishing margins for leading-edge products
in advanced technology nodes, design closure and accuracy of
timing analysis have emerged as serious concerns. A significant
portion of design turnaround time is spent on timing analysis at
combinations of process, voltage and temperature (PVT) corners.
At the same time, accurate, signoff-quality timing analysis is
desired during place-and-route and optimization steps, to avoid
loops in the flow as well as overdesign that wastes area and
power. We observe that timing results for a given path at different
corners will have strong correlations, if only as a consequence of
physics of devices and interconnects. We investigate a data-driven
approach, based on multivariate linear regression, to predict the
timing analysis at unobserved corners from analysis results at
observed corners. We use a simple backward stepwise selection
strategy to choose which corners to observe and which to predict.
In order to accelerate convergence of the design process, the model
must yield predicted values (from analysis at a limited number
of observed corners) that are sufficiently accurate to substitute
for unobserved ones. Our empirical results indicate that this is
likely the case. With a 1M-instance example in foundry 16nm
enablement, we obtain a model based on 10 observed corners that
predicts timing results at the remaining 48 unobserved corners
with less than 0.5% relative root mean squared error, and 99%
of the model’s relative prediction errors are less than 0.6%.

I. INTRODUCTION

In advanced-node IC design, EDA tools and flows are
confronted today by multi-million-instance designs and signoff
requirements at hundreds of timing scenarios. A substantial
amount of tool runtime, as well as overall compute and license
resource, must be spent to obtain analysis of timing across
multiple process, voltage and temperature (PVT) analysis cor-
ners. All else being equal, design teams would like to always
have accurate analyses at all signoff corners: this helps avoid
expensive loops in the place-and-route and optimization steps
of the flow, and also helps avoid overdesign that wastes area
and power. However, as a practical matter designers can analyze
timing at only a small number of corners during most of the
design steps leading up to final signoff. This potentially masks
many real violations, since PVT effects on signal arrival time
at a given timing endpoint will depend on the combination
of gates and wires in any given timing path. To reduce the
risk of masking real violations that are realized only in final
timing signoff runs, designers add flat timing margins or
increase the target clock period. However, there is no canonical
methodology of determining the best mix of analyzed corners,
padding by flat margins, relaxation of frequency targets, etc. –
all of which eventually result in overdesign.

If golden timing analysis across all signoff corners were
available at low overhead, designers would be able to reduce
overdesign, and detect and fix real timing violations much
earlier in the design cycle. Our present work pursues a data-
driven approach to this challenge of reducing timing analysis

effort in advanced-node IC design, with the aim of enabling
faster design convergence. A motivating observation is that
path delays at different corners are strongly correlated, with
correlations dependent on the topology and structure of the
timing path. Our work seeks to accurately capture and exploit
this correlation, so as to improve design convergence and
reduce schedule cost.

Our main result shows the feasibility of machine learning
model-based prediction of timing results at many unknown
corners, based on timing results from comparatively few known
corners. Based on an analysis of timing path reports taken
across all signoff PVT corners, we apply greedy deletion (i.e.,
backward elimination) to determine a high-quality set of known
corners at which timing needs to be analyzed using a golden
tool. While we have explored multiple machine learning models
to predict timing results at the remaining unknown PVT corners,
a simple multivariate linear regression model produces the best
results and is the focus of our discussion below.

II. BACKGROUND AND PRELIMINARIES

Table I defines notations that we use below. We use N to
denote the total number of analysis corners and n < N to
denote the number of corners whose path delay values are
known. We denote the set of known corners by {Tknown}. Our
goal is to accurately predict N −n unknown path delay values
from n known path delay values. We use {Tunknown} to denote
the set of unknown corners.

As seen in Figure 1, timing results can be viewed as elements
in a large matrix whose rows represent timing paths and whose
columns represent corners.1 We use Rtrain and Rtest to denote
the numbers of timing paths that are used, respectively, in
training and testing (i.e., inference) of our model. Thus, the
entire top portion of the matrix represents the training data
that is used to train a predictive model. We refer to this matrix
of training data as M1.

A trained predictive model is used to infer the unknown
elements in the bottom, testing (or, inference) matrix, which
we refer to as M2. Finally, we use Xtrain and Xtest to
respectively denote the matrix blocks of known corners that
serve as inputs to our predictive model, and we use Ytrain

and Ytest to respectively denote the matrix blocks of unknown
corners that our model is designed to predict.
Problem Statement. We formally state our problem, which is
a form of matrix completion, as follows.
Given: (i) a complete matrix M1 split into n column vectors
{Xtrain}n

1 and N − n column vectors {Ytrain}N
n , and

1Our discussion will generally use the terms corner and column interchange-
ably. We also use both testing and inference to refer to evaluation of model
accuracy on a set of unknown data.

168978-3-9819263-2-3/DATE19/ c©2019 EDAA

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on July 12,2020 at 21:42:08 UTC from IEEE Xplore. Restrictions apply.

TABLE I
TERMS AND DEFINITIONS.

Term Definition
N Total number of columns in the matrix (= analysis corners)
n Number of known (i.e., analyzed) columns
N − n Number of unknown (i.e., to be predicted) columns
{Tknown} Set of known columns
{Tunknown} Set of unknown columns
R Total number of rows in the matrix (= timing paths)
Rtrain Total number of complete rows (training)
Rtest Total number of rows with missing columns (testing/inference)
Xtrain Matrix of known columns, used in model training
Xtest Matrix of known columns, used in model testing/inference
Ytrain Matrix of known columns, used in model training
Ytest Matrix of unknown columns, used in model testing/inference
W Model weight vector output by model training
M1 Matrix of size Rtrain × N
M2 Matrix of size Rtest × N
LRM Linear regression model

containing Rtrain rows of timing paths, along with (ii) an
incomplete matrix M2 split into n known column vectors
{Xtest}n

1 and N − n unknown column vectors {Ytest}N
n ,

containing Rtest rows of timing paths.
Use: {Xtrain}n

1 and {Ytrain}N
n to learn a model that can

predict the unknown N − n columns {Ytest}N
n of M2 from

the known n columns {Xtest}n
1 of M2.

This is a problem in multivariate regression. The simplest
models for this purpose, which we report on in this paper, are
linear regressors that attempt to minimize the mean squared
error of predicted values (even as other metrics may be more
meaningful for real-world evaluation).

Rtrain

Rtest

Xtrain Ytrain

Xtest Ytest

y1 y2 y3 yN-nx1 x2 xn

n columns (N-n) columns

Fig. 1. Visualization of timing prediction as a problem in matrix completion.

Intuition for Multivariate Linear Regression. Our overall
approach is based on the premise that the path delay values
at different analysis corners are strongly correlated. Intuitively,
such correlations are a consequence of the underlying physics
of devices, interconnects, and signal delay propagation along
timing paths. Though it may be difficult to model the de-
tailed physics that produce these correlations, we can measure
and exploit these correlations to predict large numbers of
unknown path delay values from smaller numbers of known
ones. A useful exercise is to imagine the path delay values
at different analysis corners as the coordinates of points in
a high-dimensional space. Repeated analyses of these path
values generate empirical distributions over this space; when
we say that these values are strongly correlated, we mean
that these distributions of points are far from uniform. Indeed,
as we show later, the main support of these distributions is
heavily concentrated in a much lower dimensional subspace.

An equivalent observation is that the large data matrix, shown
in Fig 1, can be very well approximated by a matrix of much
lower rank: i.e., many of the columns of this matrix are either
linearly dependent or very nearly so. For this reason, we might
expect even simple linear methods in multivariate regression to
excel at the task of predicting certain columns from collections
of others. This is the hypothesis we investigate in this paper.
Related Work. STA accuracy and runtime efficiency are a long-
time focus of EDA R&D; see, e.g., the TAU Workshop [6], [15]
and [17]. Methods that determine a smaller subset of analysis
corners, so as to improve STA runtimes, have been actively
pursued. [11] focuses on hold time analysis and determining
a minimum set of dominant corners (whose satisfaction will
result in timing feasibility at all other corners); an additional
dominance margin is used to reduce the size of this dominance
set. [13] gives a branch-and-bound methodology to identify
a single corner that has worst delay. To avoid the analysis
corner explosion entirely, [12] proposes what is effectively a
“cornerless” approach that uses a single run of STA, with
propagation of delay and slew models that are linear functions
of process parameters, to cover all process corners. A large
literature (e.g., [14]) has investigated statistical STA, which can
effectively mitigate both corner explosion and the increasingly
dominant impacts of manufacturing variability and low-voltage
operating modes. Last, recent works such as [21] highlight the
potential use of machine learning (ML) to achieve faster design
convergence. Learning-based STA prediction has been studied
by [16] and [22]; the latter uses linear regression, SVM and
random forest models to account for dynamic NBTI aging and
other correlated on-chip variations. [18] [19] [20] use ML to
reduce STA miscorrelations.

In contrast, our present work seeks to explicitly predict path
delays at unknown corners based on very small sets of known
(analyzed) corners. Also, we do not focus on guaranteeing
timing correctness (positive worst slack): since there are always
some timing violations throughout the pre-tapeout IC design
process, our goal is to achieve acceptable error distribution
in model testing.2 Last, while previous works offer insights
for older technologies, we report results across enablements
that include sub-14nm nodes, where schedule and convergence
impacts of signoff corner explosion are prominent today.

III. MODELING METHODOLOGY

In this section, we describe our three-phase modeling
procedure: subset selection, training, and testing.

(i) Subset Selection. For a fixed value of n, the problem
of subset selection is to determine which n corners are most
predictive of the remaining N−n corners. For even moderately
large values of n and N , the number of possible subsets is
prohibitively large to perform an exhaustive search. A common
approach is to adopt a greedy strategy [1]; for our problem
we use the simple strategy of greedy deletion (also known as
backward elimination [10]).3 The outcome of this procedure is

2As mentioned above, we assume that there is a benefit from comprehending
delays at all corners, particularly during timing closure and optimization steps
that are prone to “ping-pong” effects.

3Our separate studies indicate that greedy addition results in worse model
quality, especially for the small values of n that are of interest.

Design, Automation And Test in Europe (DATE 2019) 169

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on July 12,2020 at 21:42:08 UTC from IEEE Xplore. Restrictions apply.

an array sequence [predict corners] of length N − 1 whose
order tells us (for any value of n) which n corners should be
used to predict the remaining N − n corners.
(ii) Model Training. Once n and corresponding {Tknown}
are determined, the training phase finds model parameters
W ∗ = argminW ||Ytrain − Xtrain ∗ W ||22 for each n, such
that the mean squared error of predictions is minimum. This is
a one-time training investment.
(iii) Model Testing/Inference. The training phase generates
optimal model parameters W ∗ for each value of n. Each model
parameter set W ∗ has an associated error value. The cardinality
of {Tknown} is chosen using an error budget that the user
finds tolerable. The subset {Tknown} is then derived from the
[predict corners] array found by greedy deletion. Using the
corresponding W ∗, the model predicts timing at unobserved
corners {Tunknown} from observed corners {Tknown} using
Ytest = Xtest ∗ W ∗.

Modeling Flow. We study the modeling flow in Figure 2. We
first determine optimal model parameters W ∗ for each value
of n. The Inference phase predicts timing results of a test
matrix with n known columns. Use cases for our model are
elaborated in Section V. An important capability in practice
is to incrementally train models by including outliers found
from inference results, e.g., at every k executions of the model
inference phase. This allows the model to learn from outliers
and improve over time. Such a methodology might follow the
feedback loop (blue) indicated in Figure 2.4

Design
Implementation 2 (n)

Inference

Design Implementation 1 +
Artificial circuits

(“N” corners)

Trained Model
(n, N-n, W*)

Mispredictions

Training

Model Results for N-n

Determine “n” corners
that best predicts

“N –n” corners

Fig. 2. Our modeling flow. The potential feedback loop (blue arrows) is
discussed in Sections VI below.

IV. DATA GENERATION

Recall that timing results are represented using matrices
that can be fed into our models. We now describe our data
generation, including design data and analysis conditions used
in our experiments, followed by flows for our artificial circuit
generation and matrix generation.5

4In a typical SOC physical implementation methodology, a given block (hard
macro) may go through SP&R&Opt steps many times over the course of several
months, each time with slightly different constraints or floorplan. Our approach
can naturally exploit such a design process context and timeline.

5We do not separately present data preparation for inference. Reprising
previous discussion, the data flow for model inference is as follows. Recall
that some number of known corners n has been determined. Given n, we
generate the test matrix, Xtest, from timing results at n known corners. Then,
using the trained model parameters W ∗ for the n = |{Tknown}| corners, we
predict timing results in unknown corners {Tunknown} of the test matrix.

Table II describes the data used in our modeling experiments.
We use four public designs obtained from [4] [5] [7], in-
house developed artificial circuits, and three industrial designs
(prod1, prod2 and prod3) in sub-14nm technology nodes.
The space of analysis corners for our experiments in 28nm
FDSOI (Experiments 1-4 below) is the set of combinations
of Process (SS, TT, FF), Voltage (0.6 to 1.30 V in steps of
0.05), Temperature (-40C and 125C) and BEOL (RCWORST)
corners. An analogous space is used for 16nm experiments,
and we have only limited insight into the sub-14nm test data
(prod*) obtained from our industry collaborator.

TABLE II
DESIGN DATA USED FOR EXPERIMENTS.

Design # Instances # Flip-Flops # Data points
dec viterbi 61K 26K 168K
netcard 303K 66K 186K
leon3mp 450K 100K 744K
megaboom 990K 350K 510K
artificial 2.4M 400K 746K
prod1 - - 21K
prod2 - - 111K
prod3 - - 27K

Artificial Circuits Generation. We have evaluated the poten-
tial benefit of artificial circuits (i.e., small timing paths) used
during an initial, “bootstrap” training phase of modeling. Al-
gorithm 1 describes our artificial circuit generation flow. Input
to this flow is a configuration file that contains circuit variables
such as the number of stages in a timing path, {num stages};
standard cell types in the path defined by {Cell1}, {Cell2},
{Cell3} and {Sink}; launch and capture flop-types defined
by {LFlop} and {CFlop}; aggressor cell types defined by
{Agg Cell}; load cap range defined by CLrange; transition
(slew) time values defined by TRrange; and clock period values
defined by {Period}. The circuit generation sweeps through
defined values for each variable; random values are generated
between 0 and CLrange, and between 0 and TRrange, for
these two variables. For each combination of the above-defined
configuration variables, our flow generates a gate-level netlist
(doe.v) (which comprises a collection of paths), along with an
associated parasitic file (doe.spef), a transition annotation file
(doe.timing) and a constraints file (doe.sdc). Figure 3 shows a
schematic of a timing path in our artificial netlist. The path
has three stages between a launch flop and a capture flop.
Our circuits capture a wide range of coupling capacitance,
wire capacitance and input transition values along with various
combinations of standard cells.

Algorithm 1 Artificial circuit generation.

Input: Configuration file containing {num stages}, {Cell1}, {Cell2}, {Cell3},
{Sink}, {LFlop}, {CFlop}, {Agg Cell}, CLrange, TRrange, {Period}
Output: Design data for timing analysis

Sol = {doe.v, doe.spef , doe.sdc, doe.timing }
for i in {num stages} do

for j in {LFlop} do
for k in {CFlop} do

for c1 in {Cell1} do
for c2 in {Cell2} do

for c3 in {Cell3} do
for s1 in {Sink} do

for p1 in {Period} do
doe.v ← genVerilog () // netlist generation
doe.spef ← genSpef () // spef generation
doe.timing ← genTiming () // slew annotation
doe.sdc ← genSDC () // constraints generation

Sol ← {doe.v, doe.spef , doe.sdc, doe.timing }
return Sol

170 Design, Automation And Test in Europe (DATE 2019)

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on July 12,2020 at 21:42:08 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Illustration of artificial circuits.

Matrix Generation Flow. Once we have design data and
corresponding timing graphs at various analysis corners, we
translate the timing results into an equivalent matrix in which
rows represent delay values of timing paths (i.e., a single, fixed
path per row), and columns represent corners. In anticipated
usage, this matrix would be input to model training. Our method
finds {Pi} timing paths (one for each endpoint) from each
corner’s timing session dbi. It then collects the union of timing
paths {Punion} across all corners. Timing is evaluated for each
unique path in {Punion}, in all corners. Since the cardinality
of {Punion} is high, we restrict the number of endpoints
to a tractable number, num. Algorithm 2 details the matrix
generation flow.6

Algorithm 2 Matrix generation.

Input: Timing database sessions at N corners DB = {db1, db2, ..., dbN}, number
of endpoints num
Output: Matrix with path delay values

Sol = Matrix M1 {Rtrain × N}
1: for i in DB do
2: {Pi} ← getTimingPaths(i, num, nworst = 1) // List of timing paths, num

endpoints per endpoint
3: if True then
4: {Punion} ← {P1} U {P2} U {P3} .. U {PN} // union of paths across all

corners
5: {Punique} ← uniquePaths({Punion}) // unique paths from union of paths
6: for i in DB do
7: for j in {Punique} do
8: M1[j][i] ← evalTiming(j, i) // estimate delay for path j in i
9: Sol ← M1

// Delay matrix Rtrain × N
10: return Sol

V. EXPERIMENTAL VALIDATION

Our simple, regression-based modeling approach is premised
on the fact that the path delay values at different analysis
corners are strongly correlated. These correlations are seen via
principal component analysis [9]. Figure 4 plots the eigenval-
ues (normalized by the leading eigenvalue) of the covariance
matrices for the data sets of the first four public benchmark
designs listed in Table II. The relative magnitudes of these
eigenvalues measure the relative variance captured by different
principal components of the data. Note that while the data for
each design consists of path delay values at 44 different analysis
corners, the variance of the data is concentrated in a subspace
of much lower dimensionality. In particular, several orders of
magnitude separate the leading eigenvalues in these covariance
matrices from those at the middle or bottom of the spectrum.

6We have also explored an alternate method that finds worst timing paths
across all endpoints in one corner and evaluate timing for these paths in the
rest of the N − 1 corners. This ensures that all endpoints are covered, but is
biased toward worst paths of a single corner. We have evaluated both methods
and observe only negligible differences in our inference results.

Fig. 4. Relative variance captured by successive principal components of the
first four data sets in Table II (44 analysis corners).

A. Reporting Metrics

During the inference phase, we predict elements in the Ytest

region of Figure 1. This region has Rtest data points and N−n
columns. For each element (ith row and jth column) of Ytest,
we define dm

ij as the predicted path delay and da
ij as the

corresponding actual path delay from golden timing analysis.
We also define εabs

ij as the absolute error for each element of
Ytest.

Though our model aims at reducing the square of absolute
mispredictions, we understand from industry collaborators that
relative delay prediction error is a valuable criterion. Intuitively,
a timing path with larger path delay value can afford larger
misprediction, compared to a timing path with smaller path
delay. This is because the former has scope to fix violations
with data path optimizations, even with a misprediction; the
latter, having less implementation flexibility, cannot afford
misprediction as easily (hence, cost of model misprediction is
higher). With this in mind, we also report relative errors εrel

ij .
To quantify the model accuracy for the entire Ytest region

of the matrix using a single value, we report three lumped
metrics, namely, mean, 99thpercentile and 99.99thpercentile
values denoted by εmse, ε99p and ε99p99. Table III explains our
model accuracy metrics.

TABLE III
MODEL ACCURACY METRICS.

Notation Meaning
dm

ij Model predicted delay (ith row and jth column of Ytest)

da
ij Actual delay, ith row and jth column of Ytest

εabs
ij |dm

ij − da
ij | (Absolute error)

εrel
ij εabs

ij

da
ij (Absolute relative error)

εmse

q
1

Rtest

P
ij(εrel

ij)2 (Root of mean squared relative errors)

εw maxij{εrel} (Max of all absolute relative error values)

ε99p 99th percentile value of {εrel} (sorted in ascending order)

ε99p99 99.99th percentile value of {εrel} (sorted in ascending order)

B. Design of Experiments

In our experiments, we use in-house developed artificial
designs and four public benchmark designs, listed in Table II.
We use 28nm FDSOI and 16nm foundry enablements for our
model evaluation. We also use sub-14nm foundry enablement
on three industrial designs for our model evaluation.
Data Path Delay Model: Experiment 1. The model is trained
with data points from post-routed implementation of a real
design and tested on an unseen post-routed implementation

Design, Automation And Test in Europe (DATE 2019) 171

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on July 12,2020 at 21:42:08 UTC from IEEE Xplore. Restrictions apply.

of the same design. This use case is relevant to exploring
multiple physical implementations of the same design (or, re-
analyzing implementations through the months-long physical
design process) without having to analyze timing in all corners.
Artificial Testcases: Experiment 2. The goal of this experi-
ment is to assess potential benefits of our artificial testcase
development methodology. This reflects a hypothetical “ideal
scenario”, wherein we have the capability to produce artificial
testcases that span the entire space of real designs. In this
experiment, our model is trained with artificial testcases and
tested on unseen real designs. The motivating scenario: a one-
time trained model using artificial circuits can predict timing
analysis in unknown corners of any real design, using timing
analysis in few known corners of the same real design.
Clock Insertion Delay Model: Experiment 3. Accurate clock
network synthesis and optimization are essential for advanced-
node IC design. The goal of this experiment is to demonstrate
the usefulness of our model in predicting clock insertion delay
at unknown corners {Tunknown} using clock insertion delay at
known corners {Tknown}. This ensures that the clock network
is synthesized considering its delay values at all timing corners,
without overdesigning the clock tree or leaving violations
unattended till very late in the design cycle.
Corner Scalability: Experiment 4. Experiments 1-3 use N =
44 corners. Since design methodologies in advanced nodes
require timing analysis at N � 44 corners, we investigate
whether increasing the number of corners N demands an
increase of n on the same scale. We increase the number of
corners from 44 to 82 in this experiment.
Technology Independence: Experiments 5 and 6. All of
Experiments 1-4 use 28nm foundry enablement. Experiments
5 and 6 seek to confirm the utility of our modeling in more
advanced 16nm and sub-14nm foundry enablements.

C. Experimental Results

In all of our results, given as plots below, we report (y-axis)
values of mean, 99thpercentile and 99.99thpercentile
metrics, denoted as εmse, ε99p and ε99p99 (see Table III).
On the x-axis of each plot, we show n (number of known
corners), ranging from 1 to N − 1.

Results of Experiment 1. We use timing paths from a
physical implementation (0.85 utilization, aspect ratio 1) for
training, and test on an unseen physical implementation (0.75
utilization, aspect ratio 0.9) of the same design. The plots in
Column 1 of Figure 5 show that εmse ≤ 0.005 (0.5% error)
for n = 4, ε99p ≤ 0.01 (1% error) for n = 5 and ε99p99 ≤ 0.01
(1% error) for n = 14.
Results of Experiment 2. We use timing paths from in-house
developed artificial designs for training, and test on unseen
real designs. The plots in Column 2 of Figure 5 show that
εmse ≤ 0.01 for n = 18, ε99p ≤ 0.01 for n = 23 and
ε99p99 ≤ 0.01 for n = 32. Larger n needed to predict timing
at unobserved corners suggests a need for improvement of our
artificial circuit generation methodology.
Results of Experiment 3. We use 10% of clock paths
for training, and test on unseen 90% clock paths of the
same design. The plots in Column 3 of Figure 5 show that

εmse ≤ 0.005 for n = 3, ε99p ≤ 0.01 for n = 4 and
ε99p99 ≤ 0.01 for n = 6.
Results of Experiment 4. We use 10% of data paths for
training and test on unseen 90% data paths of the same design.
The plots in Column 4 of Figure 5 show that εmse ≤ 0.005 for
n = 4, ε99p ≤ 0.01 for n = 6 and ε99p99 ≤ 0.01 for n = 23.
These results suggest that a small number of known analysis
corners n can suffice to accurately predict timing analyses at
unknown corners, even as N grows large.
Results of Experiments 5 and 6. We use 10% of data points
from a real design, for training and test on unseen 90% data
points of the same design. We use N = 58 for experiments
using 16nm foundry enablement. The plots in Column 5 of
Figure 5 show that εmse ≤ 0.005 for n = 11, ε99p ≤ 0.01 for
n = 6 and ε99p99 ≤ 0.01 for n = 21.
Figure 6 shows results using sub-14nm technology libraries
on industrial designs prod1, prod2 and prod3. The plots in
Figure 6 show that εmse ≤ 0.005 for n = 5, n = 7 and n = 9,
ε99p ≤ 0.02 for n = 6, n = 9 and n = 12, and ε99p99 ≤ 0.03
for n = 8, n = 21 and n = 15, for designs prod1, prod2 and
prod3 respectively.
Worst-case Errors and Outliers. The results of Experiment
6 show that improved accuracy in sub-14nm nodes is an
important direction for our future work. Furthermore, in
each of our experiments, we see a handful of data points
that fail to be reconstructed to their high-dimensional space
accurately, even with large values of n. (In the industry datasets
studied with Experiment 6, we understand that outliers are
unsurprising for reasons such as (i) existence of rare path
types (e.g., memory as opposed to reg-to-reg) with limited
training examples, and (ii) existence of isolated corners with
no similar corners in the provided dataset.) While root-cause
analysis and improvement of outlier (high εw) predictions is
another important direction for our future work, we note that
industry design methodology teams consider such outliers
to be expected, and that effects of a few mispredictions are
insignificant relative to (i) the analysis improvement and
design convergence benefits from a predictive model, and (ii)
analysis inaccuracies that exist in current methods.7

(a) (b) (c)
Fig. 6. Results of Experiment 6 using sub-14nm technology libraries. Plots of
εmse (red), ε99p (blue) and ε99p99 (green) versus n for industrial designs (a)
prod1, (b) prod2 and (c) prod3.

VI. CONCLUSIONS

In this work, we have taken a data-driven approach to
the problem of timing analysis in advanced-node IC design.

7Our industry collaborator indicates that minor violations must be dealt with
at the end of timing closure anyway, hence worst-case outliers even with 10%
or greater prediction error would not cause concern. If deemed necessary, such
outliers could be caught up front by an STA run covering all corners, incurring
a one-time cost. Incremental model training, as suggested in the blue arrows
of Figure 2, could also help cure outliers through physical design iterations.

172 Design, Automation And Test in Europe (DATE 2019)

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on July 12,2020 at 21:42:08 UTC from IEEE Xplore. Restrictions apply.

1 2 3 4 5

(a)

(b)

(c)

(d)

Fig. 5. Results of Experiments 1, 2, 3, 4 and 5 (left to right): Plots of εmse (red), ε99p (blue) and ε99p99 (green) versus n, for designs (a) dec viterbi, (b)
netcard, (c) leon3mp and (d) megaboom (top to bottom).

We have shown that simple linear methods in multivariate
regression can accurately predict a large set of unknown corners
from a smaller set of known ones. For example, with a 1M-
instance example in foundry 16nm enablement (10% training,
90% testing), we obtain a model based on 10 observed corners
that predicts timing results at the remaining 48 unobserved
corners with less than 0.5% relative root mean squared error,
and 99th percentile relative prediction error less than 0.6%. We
are currently exploring numerous other directions to address
further challenges. With large data sets, for example, it is
possible to learn more flexible statistical models that do not
make strong assumptions of linearity. Also, to handle outliers,
it is possible to optimize more robust criteria in our statistical
fits. So far these approaches have yielded incremental benefits,
but it remains to find the optimal combination of strategies for
the problem of timing analysis in advanced-node IC design.

ACKNOWLEDGMENTS

Research at UCSD is supported by Qualcomm, Samsung,
NXP Semiconductors, Mentor Graphics, DARPA (HR0011-18-
2-0032), NSF (CCF-1564302) and the C-DEN center. We thank
Dr. Tuck-Boon Chan for many helpful discussions and inputs.

REFERENCES

[1] T. Hastie, R. Tibshirani and J. Friedman, The Elements of Statistical
Learning: Data Mining, Inference, and Prediction, Springer, 2009.

[2] Synopsys, Inc., https://www.synopsys.com
[3] scikit-learn, http://scikit-learn.org
[4] OpenCores, https://opencores.org
[5] RISC-V, https://riscv.org
[6] TAU Workshop, https://www.tauworkshop.com

[7] M. M. Ozdal, C. Amin et al., “The ISPD-2012 Discrete Cell Sizing
Contest and Benchmark Suite”, Proc. ISPD, 2012, pp. 161-164.

[8] Synopsys PrimeTime User Guide, http://www.synopsys.com/Tools/
Implementation/SignOff/Pages/PrimeTime.aspx

[9] I. T. Jolliffe, Principal Component Analysis, Springer, 2002.
[10] I. Guyon and A. Elisseeff, “An Introduction to Variable and Feature

Selection”, J. Machine Learning Research 3 (2003), pp. 1157-1182.
[11] S. Onaissi, F. Taraporevala, J. Liu and F. Najm, “A Fast Approach for

Static Timing Analysis Covering All PVT Corners”, Proc. DAC, 2011,
pp. 777-782.

[12] S. Onaissi and F. N. Najm, “A Linear-time Approach for Static Timing
Analysis Covering All Process Corners”, IEEE Trans. on CAD 27(7)
(2008), pp. 1291-1304.

[13] L. G. e Silva, L. M. Silveira and J. R. Phillips, “Efficient Computation
of the Worst-Delay Corner”, Proc. DATE, 2007, pp. 1-6.

[14] C. Visweswariah, K. Ravindran et al., “First-order Incremental Block-
based Statistical Timing Analysis”, IEEE Trans. on CAD 25(10) (2006),
pp. 2170-2180.

[15] J. Bhasker and R. Chadha, Static Timing Analysis for Nanometer Designs:
A Practical Approach, Springer, 2009.

[16] D. Stamoulis et al., “Linear Regression Techniques for Efficient Analysis
of Transistor Variability”, Proc. IEEE ICECS, 2014, pp. 267-270.

[17] J. J. Nian, S. H. Tsai and C. Y. Huang, “A Unified Multi-corner Multi-
mode Static Timing Analysis Engine”, Proc. ASP-DAC, 2010, pp. 669-
674.

[18] A. B. Kahng, M. Luo and S. Nath, “SI for Free: Machine Learning of
Interconnect Coupling Delay and Transition Effects”, Proc. SLIP, 2015,
pp. 1-8.

[19] A. B. Kahng, S. Kang et al., “Learning-Based Approximation of Inter-
connect Delay and Slew in Signoff Timing Tools”, Proc. SLIP, 2013, pp.
1-8.

[20] S. S. Han et al., “A Deep Learning Methodology to Proliferate Golden
Signoff Timing”, Proc. DATE, 2014, pp. 1-6.

[21] A. B. Kahng, “Machine Learning Applications in Physical Design: Recent
Results and Directions”, Proc. ISPD, 2018, pp. 68-73.

[22] S. Bian et al., “LSTA: Learning-Based Static Timing Analysis for High-
dimensional Correlated On-chip Variations”, Proc. DAC, 2017, pp. 1-6.

Design, Automation And Test in Europe (DATE 2019) 173

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on July 12,2020 at 21:42:08 UTC from IEEE Xplore. Restrictions apply.

